
La metformina ha sido durante más de sesenta años el tratamiento principal para la diabetes tipo 2. Además de su eficacia antidiabética, en los últimos años cobró fama por su posible vínculo con la longevidad y el retraso del envejecimiento, convirtiéndose en uno de los medicamentos más estudiados del mundo.
Ahora, gracias a un descubrimiento liderado por científicos del Baylor College of Medicine, surge un cambio de paradigma: la metformina no solo actúa en el hígado y el intestino como se creía, sino que también tiene un mecanismo directo en el cerebro.
El hallazgo que cambia la visión sobre la metformina
Un equipo internacional identificó que la metformina necesita la acción de una proteína llamada Rap1 en una zona del cerebro conocida como hipotálamo ventromedial (HVM) para reducir los niveles de glucosa en sangre.
Según lo explicado por Makoto Fukuda, autor principal y profesor asociado en Baylor, este mecanismo cerebral resulta esencial y hasta ahora era desconocido. El grupo planteó una pregunta clave: ¿el cerebro participa realmente en el efecto antidiabético de la metformina?

Para responder, llevaron a cabo experimentos con ratones modificados genéticamente para que no tuvieran la proteína Rap1 en el HVM. Cuando estos animales, que seguían una dieta rica en grasas, recibieron metformina, sus niveles de glucosa no disminuyeron, aunque sí respondieron a tratamientos convencionales como la insulina.
Esto confirmó que la acción de la metformina depende de la presencia de Rap1 en el cerebro y no solo en los órganos periféricos.
El poder de la vía cerebral: menos dosis, mayor eficacia
El estudio, publicado en Science Advances y comunicado por la propia Facultad de Medicina de Baylor, demostró que incluso inyectando una cantidad muy pequeña de metformina directamente en el cerebro de ratones diabéticos, la glucosa en sangre disminuyó notablemente. Este efecto se alcanzó con dosis miles de veces más bajas que las utilizadas por vía oral.
Así, quedó claro que el cerebro responde a niveles mucho menores del fármaco, lo que podría permitir en el futuro diseñar terapias con menos efectos secundarios.

Además, los investigadores identificaron que las neuronas SF1 son fundamentales en este proceso. Detectaron que la metformina aumenta su actividad solo si Rap1 está presente. Si esta proteína falta, el medicamento deja de ejercer efecto, lo que refuerza la idea de que Rap1 es imprescindible para la acción cerebral de la metformina.
Implicancias para el tratamiento de la diabetes y más allá
Estos resultados ofrecen información clave para el desarrollo de nuevos tratamientos más precisos y seguros para la diabetes tipo 2. Hasta el momento, la mayoría de los fármacos antidiabéticos están diseñados para actuar sobre el hígado o el intestino, órganos que requieren concentraciones elevadas de medicamento.
El descubrimiento de la vía cerebral revela que se puede lograr el mismo efecto con dosis mucho menores. Este conocimiento podría transformar la forma de abordar la enfermedad, con terapias mejor dirigidas y menos riesgos de efectos indeseados.

Makoto Fukuda destacó: “El descubrimiento cambia nuestra perspectiva sobre la metformina. Demuestra que su acción no se limita al hígado o el intestino, sino que también involucra directamente al cerebro”.
El científico añadió que pocas medicinas antidiabéticas actuales actúan sobre el sistema nervioso central, lo que convierte este hallazgo en una oportunidad única para la investigación y el desarrollo de nuevos abordajes terapéuticos.
Colaboración internacional y apoyo institucional
El estudio reunió a científicos de Estados Unidos y Japón pertenecientes al Baylor College of Medicine, la Louisiana State University, la Nagoya University y la Meiji University. La colaboración internacional amplió la perspectiva del trabajo y aportó diferentes enfoques.
El proyecto fue financiado por organismos como los Institutos Nacionales de Salud de Estados Unidos, el Departamento de Agricultura estadounidense, la Asociación Estadounidense del Corazón, la Asociación Estadounidense de la Diabetes y varias fundaciones japonesas. Este respaldo permitió realizar experimentos exhaustivos y obtener resultados concluyentes.

El equipo planea estudiar si la vía cerebral de Rap1 también está relacionada con otros potenciales beneficios de la metformina, como el retraso del envejecimiento cerebral y la protección frente a enfermedades neurodegenerativas. Si se confirman estos efectos, podrían surgir nuevas estrategias no solo para tratar la diabetes, sino para mejorar la salud cerebral y la longevidad humana.
El hallazgo de que la metformina actúa sobre el cerebro revoluciona la comprensión sobre la diabetes tipo 2 y su tratamiento, y abre la puerta a terapias más eficaces y personalizadas, con beneficios que podrían ir mucho más allá del control de la glucosa.
Últimas Noticias
Lo que no se sabía sobre el dolor de espalda y los trastornos del sueño en hombres mayores
Un estudio de la Universidad Estatal de Pensilvania identificó cómo las molestias en la columna pueden predecir dificultades para dormir. La importancia de detectar y tratar el dolor temprano

Alerta por gripe H3N2: cuáles son los síntomas y a quiénes afecta la nueva variante en Argentina
La confirmación de la primera muerte y el aumento de casos en varias provincias reavivan la atención sobre esta variante viral. Las medidas de prevención para reducir complicaciones

El ayuno intermitente sin reducción de calorías no mejora la salud metabólica, concluyó un nuevo estudio
Investigadores alemanes evaluaron los efectos de la alimentación restringida en el tiempo frente al déficit calórico. Cuáles fueron los hallazgos y el impacto en el ritmo circadiano

Esta ilusión óptica viral promete medir el estrés: qué dice la ciencia
Una imagen fija que aparenta moverse recorre las redes sociales. Detrás del furor, la historia real nacida en 2016 que combinó arte digital, ciencia de la percepción y una larga cadena de desinformación

Científicos crearon una mano robótica súper versátil: desmontable, simétrica y puede tener cinco o seis dedos
Fue desarrollada por investigadores del MIT de Estados Unidos y la EPFL de Suiza. Por qué es ideal para tareas en la industria, rescate y exploración en zonas de difícil acceso



