Así funciona el “cerebro digital” del MIT que aprende, se equivoca y podría transformar la investigación de enfermedades neurológicas

Esta simulación replica conexiones neuronales reales, detecta señales previas a decisiones incorrectas y ofrece nuevas herramientas para acelerar tratamientos personalizados en el ámbito de la neurología y la psiquiatría. Las claves del avance

Guardar
Un modelo cerebral artificial anticipa
Un modelo cerebral artificial anticipa errores en la toma de decisiones y simula el aprendizaje humano con alta precisión (Imagen Ilustrativa Infobae)

Un grupo de científicos desarrolló un modelo computacional inspirado en el funcionamiento real del cerebro que no solo aprende tareas visuales con una precisión similar a la de los animales de laboratorio, sino que además puede anticipar errores en la toma de decisiones antes de que ocurran. Se trata de un avance inédito que podría ayudar a entender mejor cómo el cerebro aprende, se equivoca y se adapta.

El trabajo fue realizado por investigadores de Dartmouth College, el Picower Institute for Learning and Memory del MIT y la Universidad Estatal de Nueva York en Stony Brook, y fue publicado en la revista científica Nature Communications. Según el equipo, el modelo abre una nueva forma de estudiar los circuitos cerebrales y podría acelerar el desarrollo de terapias neurológicas innovadoras.

Un “cerebro digital” inspirado en el cerebro real

A diferencia de otros sistemas de inteligencia artificial, que suelen entrenarse con enormes cantidades de datos, este modelo fue diseñado siguiendo las reglas biológicas básicas del cerebro. Es decir, no aprendió copiando comportamientos, sino que fue construido para funcionar de manera similar a las redes neuronales reales.

La plataforma reproduce la organización y la dinámica del cerebro, incluyendo la forma en que las neuronas se conectan entre sí, cómo se comunican mediante sustancias químicas llamadas neurotransmisores y cómo cooperan distintas regiones cerebrales.

La plataforma digital se inspira
La plataforma digital se inspira en la arquitectura neuronal real y permite ensayar terapias neurológicas innovadoras aún no probadas en laboratorio (Imagen Ilustrativa Infobae)

Entre ellas se encuentran la corteza, involucrada en la percepción y el pensamiento; el estriado, clave para el aprendizaje y la toma de decisiones; y el tronco encefálico, fundamental para regular funciones básicas.

Además, el modelo incorpora el efecto de neurotransmisores como la acetilcolina, que introduce variabilidad en la actividad neuronal y cumple un papel importante en los procesos de aprendizaje. Gracias a este enfoque, la simulación no sigue reglas rígidas, sino que aprende de la experiencia, de forma más parecida a un cerebro biológico.

Cómo aprende este modelo artificial

El “cerebro digital” está compuesto por pequeñas redes de neuronas artificiales que imitan el comportamiento eléctrico y químico de las neuronas reales. Algunas de estas redes actúan como filtros: reciben información visual y ayudan a seleccionar lo que es relevante, mientras bloquean señales menos importantes. Este mecanismo, conocido como “el ganador se lleva todo”, es clave para procesar información de manera eficiente.

El modelo digital recrea la
El modelo digital recrea la conectividad de regiones cerebrales como corteza, estriado y tronco encefálico, y simula la acción de neurotransmisores (Imagen Ilustrativa Infobae)

El sistema también incluye cierto nivel de “ruido”, es decir, pequeñas variaciones en la actividad neuronal. Lejos de ser un defecto, este ruido cumple una función importante: permite explorar distintas alternativas y favorece el aprendizaje. Con el tiempo y la práctica, algunas conexiones se fortalecen, lo que hace que el modelo mejore su desempeño y tome decisiones más precisas, de forma similar a lo que ocurre en el cerebro humano.

Un hallazgo inesperado: señales que anticipan errores

Durante las pruebas, los investigadores observaron un resultado sorprendente. Cerca del 20 % de las neuronas analizadas mostraban patrones de actividad capaces de anticipar errores en la toma de decisiones antes de que ocurrieran. A estas células las denominaron “neuronas incongruentes”.

Estas neuronas parecían activarse cuando el sistema evaluaba opciones que podían conducir a una decisión incorrecta. En otras palabras, el modelo no solo aprendía a acertar, sino que también exploraba activamente caminos equivocados, una estrategia que podría ser clave para adaptarse a situaciones nuevas o inciertas.

Durante las pruebas, el 20%
Durante las pruebas, el 20% de las neuronas artificiales anticiparon errores antes de que ocurrieran, lo que revela la existencia de neuronas incongruentes (Imagen Ilustrativa Infobae)

Para confirmar que este fenómeno no era exclusivo de la simulación, el equipo revisó grandes bases de datos de registros neuronales obtenidos en animales. Allí comprobaron que este tipo de señal también existe en el cerebro biológico, aunque hasta ahora había pasado desapercibida.

Richard Granger, autor principal del estudio, explicó que no esperaban encontrar este patrón en datos experimentales reales. Sin embargo, al buscarlo con más atención, confirmaron que la señal estaba presente, aunque nunca había sido identificada ni analizada en profundidad.

Un paso hacia nuevas terapias y aplicaciones clínicas

Este descubrimiento cambia la forma en que se entiende el aprendizaje cerebral. Tradicionalmente, se pensaba que el cerebro solo “aprendía” cuando detectaba un error después de cometerlo. Este modelo sugiere que el cerebro también anticipa errores, lo que le permite ajustar su comportamiento de manera más flexible.

La acetilcolina se destaca en
La acetilcolina se destaca en el sistema artificial por su rol en la variabilidad neuronal y los procesos de aprendizaje cerebral (Imagen Ilustrativa Infobae)

Comprender este mecanismo podría ser clave para estudiar enfermedades neurológicas y psiquiátricas en las que la toma de decisiones y el aprendizaje se ven afectados. Además, el modelo ofrece una herramienta poderosa para probar medicamentos y terapias en un entorno virtual, antes de avanzar a estudios en animales o personas, lo que reduce costos, tiempos y riesgos.

El equipo científico, que incluye a Richard Granger, Earl K. Miller y Lilianne R. Mujica-Parodi, fundó la empresa Neuroblox.ai para expandir las aplicaciones biomédicas del modelo. Mujica-Parodi, directora del proyecto y CEO de la compañía, lidera los esfuerzos para trasladar la simulación al ámbito farmacéutico. “La idea es contar con una plataforma que permita descubrir y mejorar tratamientos neurológicos de manera más eficiente”, explicó Miller.

Actualmente, el modelo se encuentra en expansión. Los investigadores trabajan en incorporar nuevas regiones cerebrales y distintos neurotransmisores, así como en evaluar cómo diversas intervenciones —incluida la administración de fármacos— pueden modificar la actividad cerebral y corregir patrones anómalos.

Desde el Picower Institute del MIT, subrayan que el objetivo final es doble: entender mejor cómo funciona el cerebro en condiciones normales y, al mismo tiempo, arrojar luz sobre trastornos neurológicos, con la meta de desarrollar intervenciones más precisas y personalizadas.

Últimas Noticias

Un estudio identificó una característica molecular asociada a la actividad cerebral de adultos con autismo

Investigadores de la Universidad de Yale encontraron que una variación específica en el receptor mGlu5 podría aportar información relevante sobre la diversidad neurobiológica. La importancia de este avance y por qué aclaran que este hallazgo no permite diagnósticos, ni establece causas directas de esta condición

Un estudio identificó una característica

Una planta medicinal de uso ancestral en Brasil mostró ser eficaz contra la artritis en una investigación científica

Un reciente estudio experimental respaldó la eficacia antiinflamatoria y analgésica de un vegetal silvestre de uso popular

Una planta medicinal de uso

Detectan dos nuevos subtipos de esclerosis múltiple gracias a un análisis con inteligencia artificial

Un estudio con 600 pacientes reveló patrones biológicos diferenciados, lo que podría transformar el diagnóstico y favorecer tratamientos personalizados

Detectan dos nuevos subtipos de

Las estatinas no solo protegen contra el colesterol: prueban su efecto en personas con diabetes tipo 2

Científicos de la Universidad de Hong Kong analizaron datos de miles de pacientes británicos y hallaron beneficios en la salud general. Uno de los autores del estudio dio a Infobae las claves de la investigación

Las estatinas no solo protegen

Cómo cuestionar las dudas puede ayudar a no abandonar las metas

Una investigación de la Universidad Estatal de Ohio demuestra que cuestionar la validez de las incertidumbres internas ayuda a mantener la perseverancia y la resiliencia frente a metas personales de largo plazo

Cómo cuestionar las dudas puede