Cómo un sensor cuántico podría revolucionar el diagnóstico, la seguridad y el análisis ambiental en los próximos años

Desarrollado por investigadores de la Universidad Johns Hopkins, este dispositivo utiliza vibraciones para detectar moléculas. Por qué aseguran que puede identificar compuestos con sensibilidad inédita, según IEEE Spectrum

Guardar
El sensor cuántico detecta moléculas
El sensor cuántico detecta moléculas a través de vibraciones características y promete revolucionar el análisis químico y biomédico (Johns Hopkins University)

Un sensor cuántico desarrollado por investigadores de la Universidad Johns Hopkins promete transformar la identificación molecular, abriendo nuevas posibilidades para el diagnóstico médico temprano y la monitorización ambiental.

El dispositivo, capaz de detectar moléculas a través de sus vibraciones características, representa un avance en la sensibilidad y precisión de los métodos analíticos, de acuerdo con los resultados publicados en Science Advances y difundidos por IEEE Spectrum.

Asimismo, el equipo liderado por Peng Zheng e Ishan Barman del departamento de ingeniería mecánica de Johns Hopkins, validó experimentalmente un sensor que utiliza principios cuánticos para identificar moléculas en condiciones ambientales normales.

Este avance podría facilitar la detección precoz de enfermedades, el control de contaminantes en entornos industriales y la vigilancia de la calidad ambiental, áreas donde la identificación precisa de compuestos a niveles extremadamente bajos resulta crucial.

El dispositivo desarrollado por científicos
El dispositivo desarrollado por científicos de la Universidad Johns Hopkins amplifica señales moleculares y permite identificar compuestos (Johns Hopkins University)

Limitaciones de las técnicas de espectroscopía convencional

Las técnicas convencionales de espectroscopía vibracional, como la infrarroja y la Raman, fueron herramientas fundamentales para el análisis molecular gracias a su capacidad de proporcionar una “huella digital” química.

Sin embargo, estas metodologías presentan limitaciones: la interacción entre la luz y la materia suele ser débil, lo que genera señales tenues y vulnerables al ruido de fondo, especialmente en medios biológicos complejos como sangre o tejidos.

Además, la fiabilidad de estas técnicas puede verse comprometida por fluctuaciones de intensidad, interferencias espectrales y la congestión de señales, lo que dificulta la identificación específica de moléculas en escenarios reales.

Una solución basada en principios cuánticos

Para superar estos obstáculos, el sensor desarrollado por el equipo de Johns Hopkins recurre a un principio cuántico innovador. El dispositivo emplea cavidades ópticas formadas por espejos de oro de alta reflectividad, con un grosor de apenas 12 nanómetros y un diámetro de aproximadamente 6 micrómetros.

El sensor utiliza cavidades ópticas
El sensor utiliza cavidades ópticas de oro y estados híbridos cuánticos para superar las limitaciones de la espectroscopía vibracional convencional (Johns Hopkins University)

En el interior de estas cavidades, la luz y las vibraciones moleculares interactúan de manera tan intensa que dan lugar a estados híbridos denominados vibropolaritones. Estos estados cuánticos, resultado del fuerte acoplamiento entre los fotones virtuales y las vibraciones moleculares, amplifican la señal molecular y permiten una detección mucho más sensible que la óptica clásica.

Según explicó el científico Peng Zheng a IEEE Spectrum, “este avance requirió tres ingredientes: ingeniería nanofotónica precisa para confinar la luz y acoplarla a las vibraciones, avances teóricos en la comprensión de los estados híbridos cuánticos y herramientas espectroscópicas modernas capaces de resolver desplazamientos muy pequeños en las señales moleculares”. También subrayó que solo recientemente la madurez de estas tecnologías ha permitido su integración en un solo sistema funcional.

Validación experimental y potencia del sensor

La validación experimental del sensor se realizó utilizando 4-mercaptobenzonitrilo, una molécula orgánica disuelta en un solvente, como modelo. El equipo empleó una celda de flujo microfluídica infrarroja para analizar la transición vibracional del grupo nitrilo, que ocurre en una región espectral libre de interferencias.

Bajo condiciones ambientales específicas, el sensor identificó la molécula objetivo mediante la observación de un fenómeno conocido como separación de Rabi, que depende directamente de la concentración del analito y constituye la base para la cuantificación molecular en este enfoque cuántico.

El avance facilita la detección
El avance facilita la detección precoz de enfermedades, el control de contaminantes y la vigilancia ambiental con alta sensibilidad y precisión (Johns Hopkins University)

Ishan Barman, coautor del estudio, destacó en declaraciones recogidas por IEEE Spectrum que “los estados híbridos cuánticos de luz y materia, algo que a menudo se considera muy abstracto, pueden en realidad facilitar la detección de moléculas en condiciones prácticas”.

El especialista añadió que, al aprovechar estos estados, el equipo logró amplificar la sensibilidad molecular más allá de lo que permite la óptica convencional. Además, remarcó que los experimentos se realizaron en condiciones ambientales, sin necesidad de recurrir a vacío, temperaturas criogénicas u otros entornos extremos que suelen requerirse para preservar estados cuánticos frágiles.

Aplicaciones y desafíos futuros

El potencial de este sensor cuántico va más allá de la validación en laboratorio. Los investigadores prevén su integración en dispositivos portátiles a escala de microchip, lo que abriría la puerta a aplicaciones como el diagnóstico médico en el punto de atención, la monitorización en tiempo real de procesos farmacéuticos y la detección de contaminantes ambientales a niveles donde incluso una sola molécula puede marcar la diferencia.

Debido a esto, el investigador Zheng señaló que la capacidad de cuantificar moléculas mediante la separación de Rabi dependiente de la concentración representa una herramienta poderosa para el análisis químico y biomédico.

El equipo prevé la integración
El equipo prevé la integración del sensor en dispositivos portátiles para diagnóstico médico, monitoreo farmacéutico y detección ambiental en tiempo real (Johns Hopkins University)

A pesar de estos avances, el equipo reconoce que aún se requieren investigaciones adicionales para demostrar la eficacia del sensor en condiciones clínicas reales.

Por su parte, Barman indicó que la integración en dispositivos portátiles demandará innovaciones en materiales y diseño, pero subrayó que ya existe una vía clara para la detección molecular basada en estados cuánticos en escenarios prácticos.

Este desarrollo demostró que la física cuántica puede convertirse en la base de sensores aplicables a la salud, la seguridad y el medio ambiente, con un impacto tangible en la vida cotidiana.

Últimas Noticias

Reportan un caso de sarampión en Entre Ríos y se reactiva la alerta sanitaria nacional

Así lo confirmaron fuentes del Ministerio de Salud en un boletín: un niño de dos años y cuatro meses fue diagnosticado en Santa Elena. El Ministerio de Salud de la Nación llama a reforzar la vigilancia y la vacunación en todo el país

Reportan un caso de sarampión

Por qué estirar y bostezar genera una sensación placentera en el cuerpo de manera inmediata

El reflejo conocido como pandiculación, activa hormonas como la dopamina y el cortisol, ayudando a reforzar el bienestar físico, según señala Cleveland Clinic

Por qué estirar y bostezar

Cannabis terapéutico: en qué tres enfermedades hay evidencia y por qué alarma la automedicación

Científicos de la Universidad de Harvard y otras instituciones de los Estados Unidos advierten sobre el uso creciente de productos derivados del cannabis sin supervisión profesional. Alertaron que faltan estudios contundentes que avalen muchos de los beneficios atribuidos a estos compuestos

Cannabis terapéutico: en qué tres

Por qué el cambio climático podría producir grandes sequías en los próximos 15 años

Nuevas simulaciones climáticas revelan que las condiciones de escasez de lluvias en todo el mundo pondría en riesgo el agua y la agricultura necesaria para 750 millones de personas

Por qué el cambio climático

La proteína clave que podría ayudar a conservar la fuerza en los músculos a edades avanzadas

Investigadores de Estados Unidos demostraron en ratones que restaurar la tenascina-C reactiva la reparación muscular. Cuáles son los desafíos para transformar el avance en una terapia efectiva y segura

La proteína clave que podría