
La circulación general oceánica es un componente central del sistema climático de la Tierra, sin el cual gran parte de la superficie terrestre estaría cubierta de hielo. Esta circulación comprende movimientos que abarcan una amplia gama de estructuras y escalas, incluidos chorros como la Corriente del Golfo y Kuroshio, giros y la circulación meridional de vuelco de cuenca de varios miles de kilómetros de extensión. La circulación también incluye remolinos turbulentos de mesoescala de 100 km de tamaño, que impregnan el océano global y contienen la mayor parte de la energía cinética (KE).
Ahora, un equipo internacional de científicos ha encontrado la primera evidencia directa que vincula sistemas climáticos aparentemente aleatorios en el océano con el clima a escala global. Los hallazgos se informaron en una publicación en la revista Science Advances.
El océano tiene patrones climáticos similares a los que experimentamos en la tierra, pero en diferentes escalas de tiempo y longitud. Mientras que los terrestres pueden durar unos pocos días y tener unos 500 kilómetros de ancho, en los marítimos, como los remolinos, pueden extenderse de tres a cuatro semanas, aunque con quinta parte del tamaño, paroximadamente.

Durante mucho tiempo se especuló que estos movimientos ubicuos y aparentemente aleatorios en el océano se comunican con las escalas climáticas, pero siempre ha sido vago esta idea de vínculo porque no estaba claro cómo desentrañar este complejo sistema para medir sus interacciones. Ahora los especialistas desarrollaron un marco que puede hacer exactamente eso.
Un vínculo cercano
El objetivo era comprender cómo pasa la energía a través de diferentes canales del océano en todo el planeta. Utilizaron un método matemático desarrollado en 2019, que posteriormente fue implementado en un código avanzado, que les permitió estudiar la transferencia de energía a través de diferentes patrones que van desde la circunferencia del globo hasta 10 kilómetros. Luego, estas técnicas se aplicaron a conjuntos de datos oceánicos procedentes de un modelo climático avanzado y de observaciones satelitales.

El estudio reveló que los sistemas meteorológicos oceánicos se activan y se debilitan al interactuar con las escalas climáticas y en un patrón que refleja la circulación atmosférica global. Los investigadores también descubrieron que una banda atmosférica cerca del ecuador llamada “zona de convergencia intertropical”, que produce el 30 por ciento de la precipitación global, provoca una intensa transferencia de energía y produce turbulencias oceánicas.
Estudiar un movimiento de fluidos, es tan complejo que ocurre en múltiples escalas y no es fácil, pero que tiene ventajas sobre intentos anteriores de vincular el tiempo con el cambio climático. Es por eso que este sería un marco prometedor para comprender mejor el sistema climático.
Hay mucho interés en cómo el calentamiento global y nuestro clima cambiante están influyendo en los fenómenos meteorológicos extremos. Por lo general, estos esfuerzos de investigación se basan en análisis estadísticos que requieren datos extensos para tener confianza en las incertidumbres. En este documento se adoptó un enfoque diferente basado en el análisis mecanicista, que alivia algunos de estos requisitos y permite comprender la causa y el efecto más fácilmente.

En el análisis se presentó una estimación de la transferencia de energía cinética a escala global del océano, en escalas de 10 a 40.000 km. Esta acción es inducida por las células Hadley, Ferrel y polares de la atmósfera, y la zona de convergencia intertropical induce una intensa transferencia de KE en escala descendente.
La transferencia de alto nivel alcanza un máximo de 300 gigavatios en mesoescalas de 120 km de tamaño, aproximadamente un tercio de la energía aportada por los vientos a la circulación general oceánica. Casi las tres cuartas partes de esta “cascada” se producen al sur de los 15°S y penetran casi toda la columna de agua.
La KE de esas mesoescalas sigue el mismo ciclo pero alcanza su punto máximo cerca de 40 días después de la cascada máxima, lo que sugiere que la energía transferida a través de una escala se deposita principalmente en una escala cuatro veces mayor.
* Hussein Aluie es profesor asociado en el Departamento de Ingeniería Mecánica de la Universidad de Rochester.
Últimas Noticias
Tablas de surf ecológicas: cómo esta innovación busca revolucionar la protección de los océanos
El uso de impresoras 3D y materiales de origen vegetal en la fabricación de equipos deportivos genera menos residuos y permite nuevas alianzas entre fabricantes, diseñadores y deportistas comprometidos con el cuidado del planeta

El Caribe enfrenta la mayor degradación de arrecifes de su historia: causas, consecuencias y las claves de la recuperación
El deterioro acelerado, la pérdida de cobertura coralina y los eventos de blanqueamiento récord ponen en riesgo la biodiversidad y la protección costera. Cómo las experiencias exitosas de otras áreas protegidas podrían ofrecer una vía realista de recuperación regional

Cómo los cambios en la circulación del Ártico podrían alterar el clima del planeta, según un estudio
Una investigación analizó procesos físicos poco explorados en esta masa de agua y advirtió sobre consecuencias en los patrones meteorológicos globales

Disputa del Cártel de Sinaloa causó parte del millón de hectáreas afectadas por incendios forestales en 2025
Sinaloa, Chihuahua y Durango fueron los estados con mayor superficie quemada y consecuencias severas

Identifican un factor clave que condiciona la supervivencia de elefantes y jirafas en África
Investigadores de Dinamarca, Estados Unidos y otros países hicieron un estudio sobre las plantas. Cómo encontraron que una dinámica oculta moldea la vida y los movimientos de los animales


