
En un teléfono móvil, una computadora portátil o en servidores de gran escala, la mayoría de las tareas digitales se procesan a través de componentes diseñados para realizar cálculos. Entre ellos, tres tipos de procesadores tienen funciones distintas: CPU, GPU y NPU. En este artículo se explican las diferencias de cada uno.
Aunque a menudo se mencionan juntos, estos procesadores no realizan las mismas operaciones ni están construidos de la misma manera. Su diferencia radica en el tipo de tareas que ejecutan, la velocidad a la que operan y el volumen de datos que pueden manejar al mismo tiempo.
CPU: unidad central de procesamiento
La CPU (Unidad Central de Procesamiento) es el componente que coordina las instrucciones principales de un sistema informático. Se encuentra en teléfonos móviles, computadoras personales y servidores, y ejecuta operaciones como abrir aplicaciones, gestionar archivos y operar sistemas operativos.

Según IBM, la CPU interpreta instrucciones del software y controla la actividad del resto del sistema. Suele tener entre dos y dieciséis núcleos, cada uno capaz de ejecutar instrucciones en secuencia. Su diseño le permite atender múltiples tareas generales, como reproducir contenido multimedia, procesar texto o controlar el funcionamiento básico del dispositivo.
Por su estructura, la CPU está optimizada para realizar tareas diversas, pero no para manejar grandes volúmenes de datos en paralelo. Su uso es fundamental en cualquier equipo digital que requiera ejecutar instrucciones de propósito general.
GPU: unidad de procesamiento gráfico
La GPU (Unidad de Procesamiento Gráfico) fue desarrollada para gestionar operaciones relacionadas con imágenes y gráficos, pero con el tiempo se ha incorporado a otros tipos de procesamiento de datos que requieren operaciones repetitivas y paralelas.

Tiene una arquitectura compuesta por cientos o miles de núcleos pequeños capaces de ejecutar la misma operación sobre múltiples datos al mismo tiempo.
Nvidia, fabricante especializado en esta tecnología, señala que una GPU permite acelerar tareas como simulaciones, visualización científica y entrenamiento de modelos de inteligencia artificial. Esto se debe a su capacidad para dividir grandes volúmenes de datos y procesarlos en paralelo.
Una GPU es adecuada para escenarios donde se requiere aplicar el mismo tipo de operación sobre muchos elementos a la vez, como renderizar gráficos en tiempo real, procesar imágenes médicas o entrenar algoritmos de aprendizaje automático.

NPU: unidad de procesamiento neural
La NPU (Unidad de Procesamiento Neural) es un tipo de procesador más reciente, diseñado específicamente para ejecutar operaciones asociadas con redes neuronales y modelos de inteligencia artificial.
Está construida para resolver de manera eficiente cálculos matriciales, que son frecuentes en tareas como el reconocimiento de voz, la traducción automática o la clasificación de imágenes.
IBM explica que las NPUs ejecutan operaciones matemáticas intensivas propias del aprendizaje profundo y del procesamiento cognitivo. A diferencia de las GPU, que también pueden manejar estos procesos, las NPUs están especializadas en inferencia, es decir, en ejecutar modelos previamente entrenados de forma rápida y con menor consumo de energía.

Intel describe las NPUs como aceleradores para tareas que requieren una respuesta en tiempo real basada en datos complejos, como las que emplean los vehículos autónomos o los asistentes digitales en teléfonos inteligentes. Su integración permite que estos dispositivos ejecuten tareas de IA sin depender de servidores externos.
Procesadores complementarios
En muchos sistemas, los tres tipos de procesadores pueden funcionar de forma conjunta. La CPU coordina las operaciones generales, la GPU acelera procesos que requieren paralelismo, y la NPU se encarga de ejecutar funciones específicas de inteligencia artificial.
Esta combinación permite optimizar el rendimiento del sistema y distribuir las cargas de trabajo según el tipo de tarea.

La elección entre CPU, GPU o NPU no depende de una jerarquía de capacidad, sino del tipo de operaciones que deben ejecutarse. Cada unidad está diseñada para resolver problemas distintos, y su integración responde a la necesidad de mejorar la eficiencia en distintos contextos: desde computadoras personales hasta dispositivos conectados o sistemas autónomos.
Últimas Noticias
Cómo transformará la IA el empleo antes de 2035: millones de trabajadores afectados por las automatizaciones
Los trabajos repetitivos y administrativos figuran entre los más expuestos al avance de la IA y los sistemas automatizados

Conoce todo lo que sabemos sobre HyperOS 4, la próxima actualización de los Xiaomi con Google
La nueva versión incorporará funciones avanzadas para resumir y organizar notificaciones mediante IA, reduciendo distracciones

Acabar con las llamadas spam si es posible: cómo hacerlo en 4 pasos
Acciones como decir la frase: “No, gracias, no estoy interesado”, ayudan a minimizar el número de veces que se reciben llamadas comerciales

Desactivar Meta IA de WhatsApp es posible y no lo sabías: así se limita su presencia
Las principales razones para desactivar Meta AI incluyen el deseo de mantener la mensajería libre de algoritmos y mayor control sobre los datos

La historia detrás del discurso de Steve Jobs en Stanford: fue el mismo que LeBron James usó en una final de la NBA
El cofundador de Apple luchó con dudas y reescrituras antes de pronunciar el mensaje que, años después, se convertiría en un fenómeno global de inspiración tecnológica



