
Un equipo internacional liderado por expertos de la Charité–Universitätsmedizin Berlin desarrolló un modelo de inteligencia artificial para clasificar más de 170 tipos de tumores con un nivel de precisión que supera el 97%.
El avance, publicado en la revista Nature Cancer, apunta a transformar el diagnóstico oncológico al permitir análisis precisos incluso con datos fragmentarios y sin necesidad de biopsias invasivas.
“El modelo no solo es preciso, sino también interpretable, lo que ofrece a los especialistas una comprensión clara de cómo se realizan las predicciones, algo fundamental en el ámbito clínico”, explicó el doctor Philipp Euskirchen, coautor principal del estudio.
Diagnóstico a partir de la metilación del ADN
Según divulgaron los autores, la técnica se basa en el análisis de patrones de metilación del ADN, un proceso epigenético que regula la actividad de los genes y cuya alteración es característica en células tumorales. Esta “huella epigenética” permite diferenciar con precisión subtipos de cáncer, incluso aquellos con rasgos histológicos similares.

“Cientos de miles de modificaciones epigenéticas actúan como interruptores de activación y desactivación de secciones individuales de genes. Sus patrones forman una huella única e inconfundible”, señaló Euskirchen, investigador en la sede de Berlín del Consorcio Alemán del Cáncer y del Instituto de Neuropatología de Charité.
Este modelo fue diseñado para funcionar con datos obtenidos a través de distintas plataformas tecnológicas, como microarrays o secuenciación por nanoporos.
“Nuestro objetivo era desarrollar un modelo que clasificara los tumores con precisión, incluso si se basaban únicamente en partes del epigenoma tumoral completo o si los perfiles se recopilaban mediante diferentes técnicas y con distintos grados de precisión”, indicó el bioinformático Sören Lukassen, jefe del grupo de Ómica Médica del Instituto de Salud de Berlín en Charité.

Precisión en más de 5.000 casos clínicos
El modelo fue validado con más de 5.000 muestras tumorales, alcanzando una precisión del 99,1% en tumores cerebrales y del 97,8% en cánceres generales. Además, mantuvo un rendimiento elevado incluso cuando se utilizaron datos incompletos o de baja resolución genómica.
“Nuestro modelo permite un diagnóstico muy preciso de tumores cerebrales en el 99,1% de los casos y es más preciso que las soluciones de IA existentes hasta la fecha”, aseguró Euskirchen.
Uno de los aportes más significativos de este modelo es su aplicación en escenarios donde realizar una biopsia resulta riesgoso. En esos casos, el análisis del líquido cefalorraquídeo puede ser suficiente para generar un diagnóstico confiable, lo que elimina la necesidad de intervención quirúrgica, siempre según estos especialistas.
“Examinamos el líquido cefalorraquídeo mediante secuenciación de nanoporos, una forma novedosa, muy rápida y eficiente de análisis genético. La clasificación realizada por nuestros modelos reveló que se trataba de un linfoma del sistema nervioso central, lo que nos permitió iniciar rápidamente la quimioterapia adecuada”, relató Euskirchen sobre un caso clínico reciente.

Además, el modelo puede emitir predicciones en cuestión de segundos, lo cual lo vuelve particularmente útil en contextos donde se requieren respuestas rápidas.
El modelo no solo podría mejorar la precisión del diagnóstico, sino que permitiría avanzar hacia la identificación de genes asociados a subtipos tumorales específicos, lo que podría dar lugar a nuevos biomarcadores y estrategias terapéuticas individualizadas.
“Detectamos cómo la metilación en genes específicos, como MUM1, se asocia con subtipos raros de tumores, lo que nos ayudará a entender mejor sus mecanismos biológicos”, añadió Euskirchen.
Si bien los resultados son prometedores, los autores advierten que algunos tipos raros de tumores están subrepresentados en los conjuntos de datos, lo que limita el alcance actual del modelo en ciertos casos. También se presentaron dificultades para diferenciar entre subtipos similares, como los carcinomas renales de tipo papilar y de células claras.

En colaboración con el Consorcio Alemán del Cáncer (DKTK), se están planificando ensayos clínicos en ocho centros oncológicos de Alemania. Uno de los objetivos es evaluar el uso de esta herramienta durante cirugías y en la práctica clínica habitual.
“Aunque la arquitectura de nuestro modelo de IA es mucho más sencilla que la de los enfoques anteriores y, por lo tanto, sigue siendo explicable, ofrece predicciones más precisas y, por consiguiente, una mayor certeza diagnóstica”, concluyó Lukassen.
Últimas Noticias
Del borde de la extinción a la recuperación: cómo es el plan que permite al guepardo volver a reproducirse en estado salvaje
Un informe de BBC Wildlife Magazine detalló un enfoque de conservación basado en metapoblaciones que conecta reservas y protege la diversidad genética para restaurar al felino en su hábitat natural

Playas más chicas: por qué hay cada vez menos arena en algunas zonas de la Costa Atlántica bonaerense
La erosión costera puede observarse en Mar del Plata, Pinamar o Villa Gesell
Descubren que las retinas de las aves sobreviven sin oxígeno: por qué podría inspirar nuevos tratamientos médicos
Científicos de Dinamarca combinaron técnicas de biología molecular, imágenes y análisis computacional para estudiar a las aves. Cómo los resultados podrían ayudar al desarrollo de estrategias para tratar daños cerebrales en humanos

Revelan cómo agujeros negros supermasivos crecieron rápidamente tras el Big Bang
Un equipo internacional liderado por la Universidad de Maynooth identificó el proceso que permitió a los primeros objetos compactos del cosmos multiplicar su masa en intervalos breves

Hallaron la mano pintada más antigua del mundo: por qué revela pistas sobre la migración humana
Un equipo científico detectó que la obra rupestre tiene al menos 67.800 años de antigüedad. Por qué el hallazgo ayuda a entender cómo los primeros humanos modernos poblaron Australia y Oceanía



