
El descubrimiento de un mecanismo que permite a las raíces de las plantas atravesar suelos compactados podría revolucionar la agricultura moderna, según un estudio internacional liderado por la University of Copenhagen y publicado en Nature.
La investigación muestra que la acumulación de etileno y la remodelación de la pared celular permiten que las raíces, especialmente las del arroz, se adapten y penetren suelos densos. Este avance allana el camino para desarrollar cultivos más resistentes y productivos.
Un obstáculo global: compactación del suelo y adaptación radicular
La compactación del suelo, causada principalmente por la mecanización agrícola, es un obstáculo relevante para el desarrollo de las raíces y el rendimiento de los cultivos.
Esta condición reduce la longitud radicular y limita la capacidad de las plantas para explorar el suelo, afectando directamente la absorción de agua y nutrientes.

La University of Copenhagen destaca que el problema se agrava a nivel global, y amenaza la seguridad alimentaria y la sostenibilidad agrícola.
El equipo de investigación, que incluyó a científicos de la Shanghai Jiao Tong University y la University of Nottingham, descubrió que el etileno que se acumula alrededor de las raíces en suelos compactados activa una respuesta adaptativa clave.
El etileno induce la expresión del factor OsARF1 en la corteza de la raíz, el cual reprime los genes responsables de sintetizar celulosa (CESA), reduciendo la cantidad de este polímero estructural en la pared celular.
La disminución de celulosa provoca una expansión radial de las células corticales, generando raíces más gruesas y cortas. Este cambio anatómico, que se caracteriza por una epidermis más gruesa y una corteza más delgada, facilita la penetración en suelos densos. “Nuestros resultados demuestran que OsARF1 orquesta la respuesta de la raíz a la compactación mediante la modulación de la biosíntesis de celulosa”, señalaron los autores.

Implicaciones genéticas y nuevas rutas de investigación
Para desentrañar el proceso, los investigadores emplearon enfoques genéticos, químicos y de imagen. Utilizaron mutantes de arroz con alteraciones en el gen OsCESA6 y recurrieron a inhibidores de la síntesis de celulosa como indaziflam. Los experimentos confirmaron que una reducción moderada de celulosa potencia la capacidad de penetración de las raíces, mientras que una inhibición excesiva limita su desarrollo.
Los análisis por tomografía computarizada y microscopía electrónica mostraron que las raíces de los mutantes y las plantas tratadas con inhibidores presentan mayor diámetro cortical y paredes celulares más delgadas en la corteza, además de una epidermis robusta.
Ensayos de expresión génica confirmaron que OsARF1 reprime la actividad de los promotores génicos CESA y que su expresión aumenta en condiciones de compactación y presencia de precursores de etileno.
Se observó que raíces insensibles al etileno, como las de los mutantes ein2 y eil1, también logran penetrar suelos compactados, aunque presentan una morfología más delgada. Esto sugiere la existencia de rutas alternativas o complementarias de adaptación, incrementando la complejidad del fenómeno y abriendo nuevas líneas de investigación.

Hacia cultivos más resistentes y eficientes
El modelo propuesto sostiene que la clave para la penetración radicular en suelos compactados reside en la combinación de una epidermis más gruesa y rígida con una corteza más delgada y flexible. Esta configuración permite a la raíz soportar las fuerzas mecánicas del suelo denso y expandir su diámetro para avanzar.
El estudio advierte que, aunque la remodelación de la corteza depende de la ruta del etileno y OsARF1, el engrosamiento de la epidermis podría involucrar mecanismos todavía no identificados.
Comprender estos procesos celulares y moleculares resulta fundamental para la mejora genética de cultivos. La manipulación dirigida de la síntesis de celulosa y la respuesta hormonal constituye una estrategia viable ante los desafíos de suelos degradados o de baja calidad. Los autores subrayan que una arquitectura radicular adaptada, con epidermis reforzada y corteza flexible, permite mayor eficiencia en la absorción de recursos.
Esta configuración, semejante a los principios de la ingeniería estructural, demuestra cómo la naturaleza desarrolló soluciones convergentes a problemas mecánicos tanto en sistemas biológicos como en el diseño humano, ofreciendo inspiración directa para la innovación agrícola del futuro.
Últimas Noticias
Cuál es la extraña condición que genera que el cuerpo produzca alcohol sin consumirlo, según la ciencia
Este síndrome poco frecuente desafía la comprensión médica al causar episodios de intoxicación etílica sin ingesta de bebidas. Cuáles son los microbios responsables y un repaso por las nuevas estrategias de diagnóstico y tratamiento

Científicos prueban un innovador método para eliminar microplásticos del agua
Un equipo de la Universidad de Missouri desarrolló una técnica basada en algas genéticamente modificadas

Cómo el cerebro convierte experiencias en recuerdos duraderos, según un nuevo estudio
Un grupo de investigadores identificó el proceso por el cual se utilizan proteínas específicas para transformar vivencias en memoria estable

El lado menos conocido de la misión Artemis II: qué riesgos enfrenta el desafío de volver a la Luna
Cuatro astronautas afrontarán una travesía inédita desde la era de Apollo, con diversos peligros como la exposición a partículas energéticas, entre otros
Luna llena de Nieve: qué días de febrero se podrá ver
La fase más brillante del satélite terrestre alcanzó su máximo esplendor el domingo 1 de febrero, pero seguirá siendo visible la noche del lunes 2, ofreciendo una oportunidad ideal para observarla


