
La malaria es una la enfermedad causada por la infección por Plasmodium, que representó más de 627.000 muertes en todo el mundo en 2020, según el World Malaria Report.
A pesar de los tratamientos antipalúdicos disponibles, los niños menores de 5 años pueden desarrollar paludismo cerebral (MC), enfrentan el mayor riesgo de morbilidad y mortalidad por paludismo grave (15 a 20%). El 1% de los niños de esa edad se ven afectados por esta enfermedad según datos de la OMS. La inflamación del cerebro predice un desenlace fatal de la MC. Y los niños que sobreviven a menudo se ven afectados por secuelas neurológicas a largo plazo.
Con todas estas preocupaciones en mente, un equipo integrado por profesionales del Instituto Gulbenkian de Ciência de Portugal y del Instituto de Investigación de Infecciones Experimentales del Centro Helmholtz de la Escuela de Medicina de Hannover en Alemania, acaban de confirmar que las células cerebrales pueden detectar la presencia de parásitos de la malaria en la sangre. En la investigación que se acaba de publicar en Proceedings of the National Academy of Sciences, afirmaron que las células endoteliales en el cerebro juegan un papel crucial en la detección temprana de la infección por parásitos de la malaria.

La Organización Mundial de la Salud (OMS) denomina paludismo cerebral al tipo grave de malaria por P. falciparum que produce síntomas cerebrales. Los pacientes con malaria cerebral frecuentemente entran en coma después de una convulsión que dura más de 30 minutos. Este puede ser el caso, pero los pacientes aún deben recibir tratamiento para la malaria grave si muestran algún nivel de conciencia alterada u otros síntomas de disfunción cerebral. Las células endoteliales, células especializadas del revestimiento interno de los vasos sanguíneos, construyen una barrera entre la sangre y el cerebro para evitar que ingresen sustancias y células específicas.
Sin embargo, cuando ocurre una respuesta inflamatoria descontrolada a la infección, cambios considerables en esta barrera conducen a la malaria cerebral. En los últimos años, los expertos en este campo se han centrado en una sustancia química llamada interferón-β que parece estar relacionada con este proceso degenerativo. Este químico extremadamente inflamatorio tiene dos funciones opuestas. Puede proteger los tejidos o destruirlos. Por ejemplo, ciertas concentraciones y etapas de infección pueden provocar lesiones pulmonares. Se supone que la malaria cerebral tiene una dinámica similar.
Los investigadores emplearon ratones que simulan varios síntomas de malaria en humanos y un enfoque de ingeniería genética que les permitió eliminar este sensor en varios tipos de células para llegar a estas conclusiones.

Concluyeron que los síntomas del animal eran menos severos y que la infección causaba menos muertes cuando eliminaban este sensor en las células endoteliales del cerebro. En ese momento, entendieron cuán significativamente estas células cerebrales contribuyeron a la fisiopatología de la malaria cerebral. Los investigadores afirmaron que creían que las células endoteliales del cerebro funcionarían más tarde. “Sin embargo, como resultado de nuestros experimentos, nos dimos cuenta de que las células cerebrales eran participantes desde el principio -explicó Teresa Pais, investigadora postdoctoral del IGC y primera autora del estudio-. Las células del sistema inmunitario suelen estar asociadas con esta etapa inicial de la respuesta a una infección. Sin embargo, debido a que tienen los mismos sensores, las células cerebrales y posiblemente otros órganos pueden detectarla”.
No obstante se sorprendieron por el factor, consecuencia de la acción del parásito, que encendió el sensor y comenzó la reacción celular. Según los científicos, el parásito se multiplica después de ingresar al torrente sanguíneo e invadir los glóbulos rojos del huésped. Más tarde digiere la hemoglobina para obtener nutrición. Durante este proceso se crea una sustancia química conocida como hemo, y las células endoteliales pueden transportarla en la sangre en forma de partículas diminutas. Hemo sirve como una alerta para el sistema inmunológico cuando esto ocurre.
“No esperábamos que el hemo ingresara a las células de esta manera e iniciara esta reacción que involucra al interferón-β en las células endoteliales -afirmó Pais-. El próximo paso será tratar de inhibir la actividad de este sensor dentro de las células endoteliales y entender si podemos actuar sobre la respuesta del huésped y detener la patología cerebral en una fase inicial. Si pudiéramos hacerlo con medicamentos antiparasitarios, tal vez podríamos detener la pérdida de la función neuronal y evitar secuelas que son un problema importante para los niños que sobreviven a la malaria cerebral”, concluyó.
SEGUIR LEYENDO:
Últimas Noticias
Crean un biochip programable que puede transformar la manera en que la ciencia responda a futuras pandemias
Un dispositivo diseñado por el Instituto Weizmann promete acelerar el desarrollo de terapias, ofrecer pruebas inmunitarias precisas y permitir la adaptación inmediata ante la llegada de nuevos virus emergentes

Cómo la inteligencia artificial acelera la nueva era de los viajes espaciales y potencia la propulsión nuclear
El aprendizaje automático ya se utiliza para optimizar motores nucleares, entrenar mejor a los astronautas, gestionar desechos y automatizar robots y naves. Con la demanda de cohetes en aumento, la IA se perfila como el factor decisivo para diseñar la próxima generación de exploradores cósmicos

Suba de casos de gripe H3N2: el virus puede ingresar por múltiples vías en una comunidad y acelerar los brotes
Lo reveló un equipo de investigadores de Estados Unidos, Francia, Nicaragua y Austria, tras estudiar los contagios con técnicas de vigilancia y análisis genético. Por qué los resultados ayudan a explicar cómo el virus puede propagarse

Los osos polares en Groenlandia reescriben su ADN frente al deshielo del Ártico, asegura un estudio
El estudio señala que ciertos grupos muestran ajustes moleculares inéditos en respuesta a la transformación ambiental. Por qué este mecanismo de defensa, aunque ofrece algo de esperanza, no basta ante la urgencia de frenar la pérdida de hielo y proteger la especie

Un avance en la genética vegetal promete mejorar la productividad y adaptación de las plantas de cultivo
El descubrimiento de nuevas redes moleculares en la división celular y la fertilidad vegetal abre oportunidades para el desarrollo de variedades más resistentes, eficientes y capaces de enfrentar los desafíos del clima y la demanda alimentaria global


